روش های تکراری aor پیش حالت ساز شده برای m-ماتریس ها
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی
- author عباس بهزادی پور
- adviser قدرت عبادی صداقت شهمراد
- Number of pages: First 15 pages
- publication year 1392
abstract
دستگاه های خطی با ماتریس ضرایب $m$-ماتریس با بعد بزرگ در زمینه های مختلف علوم مانند فیزیک، مسائل عمران شبیه مقاومت مصالح، برق، زیست شناسی و... ظاهر می شوند. در این پایان نامه، حل دستگاه خطی $ax=b$ با استفاده از روش تکراری دو پارامتری پیش حالت ساز شده با ماتریس پیش حالت ساز $p=i+l+u$ که در آن $a$ یک $m$-ماتریس یا $l$-ماتریس است، ارائه می شود. سپس با ارائه قضایای مقایسه ای نشان داده می شود که ماتریس پیش حالت ساز جدید، سرعت همگرایی روش $aor$ را افزایش می دهد. سپس برای نشان دادن کارایی روش، نتایج حاصله را با نتایج حاصل از روش های پیش حالت ساز شده ی مطرح شده ی پیشین، مقایسه می کنیم.
similar resources
بهبود دو روش تکراری پیش شرط سازی شده aor برای z-ماتریس ها
در این پایان نامه، دو روش تکراری پیش شرط سازی شده برای حل دستگاه معادلات خطی و ماتریس ضرایب برای -ماتریس ها و -ماتریس ها ارائه می دهیم. این روش ها را می توانیم بعنوان بهبود روش های معرفی شده در نظر بگیریم. و در نهایت برخی مثال های عددی برای نشان دادن اثربخشی این پیش شرط سازی ها را ارائه داده ایم.
روش های تکراری فوق تخفیف شتاب داده شده ی پیش شرط سازی شده برای m-ماتریس ها
دستگاه معادلات خطی ax=b که در آن ماتریس ضرایب a یکm – ماتریس است را در نظر بگیرید. این گونه ماتریس ها در مسائل مختلفی از علوم و مهندسی ظاهر می شوند. در این پایان نامه به منظور حل دستگاه فوق، یک پیش شرط ساز کلی ارائه کرده و نشان می دهیم که این پیش شرط ساز، سرعت همگرائی روش های تکراری aor را افزایش می دهد. در پایان برای بیان کارایی روش، نتایج عددی متناظر با روش gmres پیش شرط سازی شده ارائه می شود.
15 صفحه اولروش های تکراری برای محاسبه معکوس تعمیم یافته ماتریس توپلیتز
در این پایان نامه از تکرار نیوتن و روش مربع سازی متوالی ماتریس برای محاسبه معکوس مور-پن رز ماتریس های توپلیتز استفاده شده است. ماتریس های توپلیتز دارای ساختار خاص با عناصر قطری ثابت در امتداد قطرها هستند. محاسبه معکوس مور-پن رز ماتریس های توپلیتز در حوزه های مختلف ریاضیات، علوم محاسباتی و مهندسی کاربرد زیادی دارند. به دلیل ساختار خاص ماتریس های توپلیتز و نیز کاربردهای ...
بهبود همگرایی روش تکراری sor با استفاده از پیش شرط سازی برای ماتریس های خاص
روش های مختلفی برای حل دستگاه خطی ax=b ارائه می شوند، که در آن a یک ماتریس معلوم، b معلوم و x مجهول می باشد. یک دسته از این روش ها، روش های تکراری می باشند و یکی از روش های تکراری، روش تکراری sor است، اغلب برای سرعت بخشیدن به همگرایی روش های تکراری برای حل دستگاه خطی ax=b از روش های پیش شرط سازی استفاده می شود. برای این منظور پیش شرط های مختلفی ارائه شده اند و برای حل دستگاه خطی ax=b تحت فرض ها...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده ریاضی
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023